

JEE-Main-30-01-2024 (Memory Based) [EVENING SHIFT]

Chemistry

Question: Why KMnO₄ shows colour?

Options:

- (a) Due to d-d transition
- (b) Due to metal to ligand charge transfer
- (c) Due to ligand to metal charge transfer
- (d) Due to F center

Answer: (c)

Solution: The transition of a nonbonding 2p oxygen electron to the vacant molecular orbital of a tetrahedral complex causes the lowest energy Ligand to Metal charge transfer.

Question: C is added to solution of A and B, find mole fraction of C

Options:

(a)
$$n_c / (n_A + n_B + n_c)$$

(b)
$$n_c / (n_A - n_B + n_c)$$

(c)
$$n_c / (n_A - n_c + n_B)$$

(d)
$$n_c / (n_A + n_B)$$

Answer: (a)

Solution:

$$\label{eq:moles} \text{Mole fraction} = \frac{\text{moles of one component}}{\text{Total moles of all component}}$$

: Sum of mole fractions of all components in solution

is always one.

$$i.e., x_A + x_B + x_C = \frac{n_A}{n_A + n_B + n_C} + \frac{n_B}{n_A + n_B + n_C} + \frac{n_C}{n_A + n_B + n_C}$$

Question: IUPAC name of compound:

Options:

- (a) 2-Methylbutyne
- (b) 3-Methylbut-1-yne
- (c) 2-Methylbutene
- (d) 3-Mehtylbutane

Answer: (b) **Solution:**

Question: Which reagent on reacting with phenol gives salicylaldehyde?

Options:

(a) CO₂, NaOH

(b) CHCl₃, NaOH

(c) CCl₄, NaOH

(d) H_2O , H^+

Answer: (b)

Solution:

Phenol
$$+ CHCl_3 \xrightarrow{A} + N_4OH \xrightarrow{A} - H_2O$$
 $+ CHCl_3 \xrightarrow{A} + CHCl_3 \xrightarrow{A} - CHCl_3 \xrightarrow{CHCl_2} + 2N_4OH \xrightarrow{CHCl_2} - CHO$
 $-H_2O \xrightarrow{CHO} + dil HCl \xrightarrow{-N_4Cl} - CHO$

Salicylaldebyde

Question: Which of the following has a square pyramidal shape?

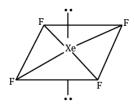
Options:

(a) CIF₃

(b) BrF₅

(c) XeF₄

(d) NH₃


Answer: (b)

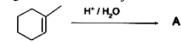
Solution:

Question: Statement I: NH₃ has lower dipole moment than NF₃

Statement II: In NF₃ flow of electron is in same direction.

Options:

- (a) Both statement I and statement II are false
- (b) Statement I is true but statement II is false
- (c) Statement I is false but statement II is true
- (d) Both statement I and statement II are true


Answer: (a)

Solution:

$$F = 0.24 D$$

$$\mu = 1.46 D$$

Options:

(a)

(b)

(d) None of the above

Answer: (a) Solution:

Question: What happens when phenol is treated with chloroform in presence of NaOH at 343 K followed by hydrolysis?

Options:

(a) Salicylic Acid

(b) Salicylaldehyde

(c) Benzaldehyde

(d) Benzoic acid

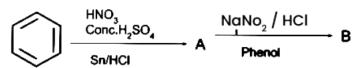
Answer: (c)

Solution:

Question: When m - chlorobenzaldehyde is treated with 50% KOH solution, the product(s) obtained is

Options:

Answer: (b) **Solution:**


Question: Correct IUPAC name the given compound is:

Options:

- (a) 3- aminobutanenitrile
- (b) 3- amino cyano butane
- (c) 2- aminobutanenitrile
- (d) 1- aminobutanenitrile

Answer: (a)

Question: Find B

Options:

- (a) p-hydroxy azobenzene
- (b) o-hydroxy azobenzene
- (c) m-hydroxy azobenzene
- (d) Azodye

Answer: (a)

Solution:

Question: In the given reaction A and B respectively are

 $CrO_2 Cl_2 + NaOH \rightarrow A + NaCl + H_2O$

 $H_2SO_4 + A + H_2O_2 \rightarrow B$

Options:

- (a) Na₂CrO₄, and CrO₅
- (b) CrO₅ and Na₂CrO₃
- (c) Na₂CrO₄ and CrO₃

(d) Na₂ Cr₂ O₇ and Na₂CrO₄

Answer: (a) Solution:

CrO₂ Cl₂ NaOH Na₂ CrO₄

 $Na_2CrO_4 + H_2O_2 + H_2SO_4 \longrightarrow CrO_5 + Na_2SO_4 + H_2O_5$

Question: _____ is based on the difference in the solubility of different components of a mixture with a solvent.

Options:

- (a) Filtration
- (b) Sublimation
- (c) Crystallization
- (d) Chromatography

Answer: (d)

Question: What is the structure of Mn_2 (CO)₁₀?

Options:

- (a) Two square pyramidal units joined by bridging CO ligands
- (b) Two square pyramidal units joined by Mn-Mn Bond
- (c) Two tetrahedral units joined by Mn-Mn Bond
- (d) Two square planer units joined by Mn-Mn Bond

Answer: (b)

Solution:

OC ___Mn ___ Mn ___ CO

Question: Statement I: H₂ Te is more acidic than H₂5

Statement II: H₂ Te has more BDE than H₂5

Options:

- (a) Statement I and II both are correct
- (b) Statement I and II both are incorrect
- (c) Statement I is incorrect and Statement II is correct
- (d) Statement I is correct and Statement II is incorrect

Answer: (d)

Solution: The bond dissociation enthalpy of H₂ Te is lower than that of H₂ S, and H₂ Te is more acidic

Question: Total optically active compound will show by these compound

Solution:

2, 3 - Dichlorobutane

Number of d and 1 isomers = $2^{n-1} = 2^{2-1} = 2$ Number of meso forms = $2^{n/2-1} = 2^{2/2-1} = 1$

Total number of stereoisomers = 2 + 1 = 3.

Question: Number of spectral lines in the He^+ for transition from n = 5 to n = 1**Solution:**

$$\frac{\varDelta n(\varDelta n+1)}{2}\Rightarrow\frac{4(5)}{2}\Rightarrow10$$